Determinants of shared electric scooter use in Washington D.C.

Leila Hawa, Boer Cui, Lijun Sun & Ahmed El-Geneidy McGill University





### INTRODUCTION

- Our study examines the factors that determine the presence of e-scooters, as well as those that cause variation in e-scooter presence between each consecutive hour and throughout the day.
- Data on the location of e-scooters in the Washington D.C. area over six full days was collected.
- Then, multi-level mixed effects linear regression models were generated to investigate the impact of time, land use characteristics, and transportation infrstructure while controlling for weather conditions.

## COVARIATES



## MODEL DESIGN

#### Multi-level mixed effects regression modelling

|                    | Model 1 Presence of e-scooters | Model 2 Average number of e-scooters | Model 3 Hourly change in average number of e-scooters | Model 4 Coefficient of variation   |  |
|--------------------|--------------------------------|--------------------------------------|-------------------------------------------------------|------------------------------------|--|
| Model type         | Logit                          | Linear                               | Linear                                                | Linear                             |  |
| Dependent variable |                                | 12                                   | Δ   Σ                                                 | Coefficient of $\frac{SD}{\mu}$    |  |
| Omission           | None                           |                                      | $\Delta_i = \Delta_{i-1} = 0$ ,<br>12AM - 1AM         | $CV = SD = \mu = 0,$<br>12AM - 6AM |  |
| Temporal unit      | Hour (144)                     | Hour (144)                           | Hour (138)                                            | Day (6)                            |  |
| Spatial unit       | Fishnet (1,671)                | Fishnet (1,308)                      | Fishnet (1,306)                                       | Fishnet (1,297)                    |  |
| No. observations   | 240,624                        | 78,260                               | 75,044                                                | 5,539                              |  |
| Bootstrapping      | Yes                            | Yes                                  | Yes                                                   | No                                 |  |

## DISCUSSION

- Weekends & late nights: fewer e-scooters & less variation in hourly e-scooter presence.
- Higher population density & being located in the CBD: more e-scooters, contributed to more change in the hour-to-hour numbers of e-scooters, but less variation throughout the day.
- Bikeshare stations & bicycle lanes: positively impacted the presence & hourly change in e-scooters, low variation throughout the day.
- Metro stations: positively impacted the average number of e-scooters in an area, and hourly movement to & from an area, not a significant indication of presence.

#### DATA

#### APIs - publicly accessible via DDOT

| Six Full Days in 2019                                                                                 | Sources                       |
|-------------------------------------------------------------------------------------------------------|-------------------------------|
| Sunday May 12th Monday May 13th Tuesday May 14th Thursday May 16th Saturday June 1st Friday June 14th | Bird Jump Lime Lyft Skip Spin |
|                                                                                                       |                               |

#### Unit of Analysis





# 240,624

#### STUDY AREA

#### Distribution of e-scooters at selected periods of the day



| E-Scooters per Fishnet                                                                                       | Metro Lines               |
|--------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                              | Central Business District |
| 0,2 3,8 9,7 1,26 1,28                                                                                        | Bodies of Water           |
| Coordinate System: GCS WGS 1984 Datum: WGS 1984 Units: Degree Sources: District Department of Transportation | 0 2.5 5 10 Kilometers     |

## REGRESSION RESULTS

|          |             | Model 1 |      | Model 2     |      | Model 3     |      | Model 4     |      |
|----------|-------------|---------|------|-------------|------|-------------|------|-------------|------|
| ord      |             | O.R.    | Sig. | Coefficient | Sig. | Coefficient | Sig. | Coefficient | Sig. |
| 00       | Weekend Day | 0.79    | *    | -0.26       | *    | -0.16       | ***  | -0.31       | **   |
| 3        | 12AM – 6AM  | 0.58    | ***  | -0.82       | ***  | -0.41       | ***  | N/A         | N/A  |
| <u>⊕</u> | 6AM – 12PM  | 0.65    | ***  | 0.21        |      | -0.03       |      | N/A         | N/A  |
|          | 12PM – 6PM  | 0.88    |      | 0.68        | ***  | 0.04        |      | N/A         | N/A  |

|            |                                         | Model 1 |      | del 1 Model 2 |      | Model       | Model 3 |             | 4    |
|------------|-----------------------------------------|---------|------|---------------|------|-------------|---------|-------------|------|
|            |                                         | O.R.    | Sig. | Coefficient   | Sig. | Coefficient | Sig.    | Coefficient | Sig. |
|            | Census Tract Population Density (1000s) | 1.13    | ***  | 0.02          | ***  | 0.00        | **      | -0.02       | ***  |
|            | Low Income<br>Area                      | 9.58    | ***  | 0.27          |      | 0.05        |         | -0.39       | *    |
| <b>(</b> ) | Low–Medium<br>Income Area               | 11.22   | ***  | 0.35          | *    | 0.09        |         | -0.39       | *    |
| Use        | High–Medium<br>Income Area              | 17.33   | ***  | 0.05          |      | 0.04        |         | -0.25       |      |
| Land       | Number of<br>Museums                    | 1.44    |      | 0.64          | ***  | 0.22        | ***     | -0.14       |      |
|            | Number of<br>Marketplaces               | 2.15    | ***  | -0.31         | ***  | -0.07       | **      | -0.16       | *    |
|            | Number of Bars<br>& Restaurants         | 1.16    | ***  | 0.23          | ***  | 0.05        | ***     | -0.03       | ***  |
|            | Part of the CBD                         | 25.36   | ***  | 3.57          | ***  | 1.00        | ***     | -0.63       | ***  |
|            | Part of a<br>College Campus             | 2.28    | ***  | -0.13         |      | -0.01       |         | -0.10       |      |
|            | Part of a<br>National Park              | 1.12    |      | 0.14          | **   | 0.06        | **      | 0.06        |      |

| Inf      |         | Model 1                                       |      | Model | Model 2     |      | Model 3     |      | 4           |      |
|----------|---------|-----------------------------------------------|------|-------|-------------|------|-------------|------|-------------|------|
|          | ב<br>ב  |                                               | O.R. | Sig.  | Coefficient | Sig. | Coefficient | Sig. | Coefficient | Sig. |
|          | ILOCI   | Number of<br>Bus Stops                        | 1.26 | ***   | 0.06        | ***  | 0.00        |      | -0.02       | *    |
| ,        | Tras    | Number of<br>Metro Stations                   | 1.94 |       | 2.01        | ***  | 0.51        | ***  | -0.20       |      |
|          |         | Number of<br>Parking Meter<br>Spaces          | 0.96 | **    | -0.02       | **   | 0.00        |      | 0.01        |      |
|          | sportar | Number of<br>Capital<br>Bikeshare<br>Stations | 3.16 | ***   | 0.83        | ***  | 0.19        | ***  | -0.30       | ***  |
| <b>-</b> | Irdns   | Fishnet<br>Contains a<br>Bicycle Lane         | 2.73 | ***   | 0.02        |      | 0.08        | ***  | -0.21       | **   |

|                                    | Model 1 |      | Model 2     |      | Model 3     |      | Model 4     |      |
|------------------------------------|---------|------|-------------|------|-------------|------|-------------|------|
|                                    | O.R.    | Sig. | Coefficient | Sig. | Coefficient | Sig. | Coefficient | Sig. |
| Temperature(°C)                    | 1.02    |      | -0.04       | ***  | 0.01        | *    | 0.02        | *    |
| Precipitation<br>Intensity (mm/hr) | 0.85    |      | 0.05        |      | -0.14       | **   | 1.76        | ***  |
| Humidity (0-1)                     | 2.60    | *    | 2.36        | ***  | 0.18        |      | -1.44       | ***  |
| Wind Speed<br>(km/hr)              | 0.99    |      | 0.03        | **   | 0.01        |      | 0.03        | ***  |

Statistical Significance \*p<0.05, \*\*p<0.01, \*\*\*p<0.001

#### CONCLUSION

- This study contributes to a more comprehensive understanding of the factors that impact the presence as well as variations in the presence of e-scooters using data obtained for e-scooters operating in Washington D.C.
- The models suggest that e-scooters were available near bike lanes.
- Dataset cannot address if an e-scooter was placed as part of rebalancing or by a user.
- There is a relationship between public transport & e-scooters, it is not clear if they serve as a first-mile last-mile solution.
- Utilization patterns can help city planners & officials understand how shared e-scooters are used and how they interact with existing systems.

#### ACKNOWLEDGEMENTS

The authors would like to thank the Social Sciences and Humanities Research Council (SSHRC) and the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support.



